Using Space Effectively: 2D

Maneesh Agrawala
CS 448B: Visualization
Fall 2018

Announcements

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefinder, but for SF Restaurant Data.

1. Implement interface and produce final writeup
2. Submit the application and a final writeup on canvas

Can work alone or in pairs Due before class on Oct 29, 2018

Final project

New visualization research or data analysis

- Pose problem, Implement creative solution
- Design studies/evaluations

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/5
- Project progress presentation: $11 / 12$ and $11 / 14$ in class ($3-4 \mathrm{~min}$)
- Final poster presentation: 12/5 Location: Lathrop 282
- Final paper: 12/9 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Using Space Effectively: 2D

Topics

Displaying data in graphs
Selecting aspect ratio
Fitting data and depicting residuals
Graphical calculations
Focus + Context
Cartographic distortion

Graphs and Lines

Effective use of space

Which graph is better?

Government payrolls in 1937 [Huff 93]

Aspect ratio

Fill space with data
Don' \ddagger worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Clearly mark scale breaks

Scale break vs. Log scale

[Cleveland 85]

Scale break vs. Log scale

[Cleveland 85]
Both increase visual resolution

- Log scale - easy comparisons of all data
- Scale break - more difficult to compare across break

Linear scale vs. Log scale

Linear scale vs. Log scale

Linear scale

- Absolute change

Log scale

- Small fluctuations
- Percent change
$d(10,20)=d(30,60)$

Semilog graph: Exponential growth

Exponential functions ($\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}$) transform into lines $\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$ Intercepł: $\log (k)$
Slope: $\log (a) m$

$y=6^{0.5 x}$, slope in semilog space: $\log (6)^{*} 0.5=0.3891$

Semilog graph: Exponential decay

Exponential functions ($\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}$) transform into lines
$\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$
Intercept: $\log (k)$
Slope: $\log (a) m$

$y=0.5^{2 x}$, slope in semilog space: $\log (0.5)^{*} 2=-0.602$

Log-Log graph

Power functions ($\mathrm{y}=\mathrm{kx} \mathrm{a}^{\mathrm{a}}$) transform into lines Example - Steven's power laws:

$$
S=k I^{p} \Rightarrow \log S=\log k+p \log I
$$

Selecting Aspect Ratio

Aspect ratio

Fill space with data
Don' \ddagger worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Banking to $\mathbf{4 5}^{\circ}$ [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when avg. absolute angle between them is 45°
Optimize the aspect rattio to bank to 45°

Aspect-ratio banking techniques

Medion-Absolute-Slope	Average-Absolute-Slope
$\alpha=\operatorname{median}\left\|S_{i}\right\| R_{x} / R_{y}$	$\begin{aligned} & \qquad \alpha=\text { mean }\left\|s_{i}\right\| R_{x} / R_{y} \\ & \text { Has Closed Form Solution } \end{aligned}$
Average-Absolute-Orientation	Max-Orientation-Resolution
Unweighted	
$\sum \frac{\left\|\theta_{i}(\alpha)\right\|}{n}=45^{\circ}$	$\sum \sum\left\|\theta_{i}(\alpha)-\theta_{j}(\alpha)\right\|^{2}$
Weighted ${ }^{i} \quad n$	Locail (${ }^{i}$ (over adjacent segments)

$$
\frac{\sum_{i}\left|\theta_{i}(\alpha)\right| l_{i}(\alpha)}{\sum_{i} l_{i}(\alpha)}=45^{\circ}
$$

$$
\sum_{i}\left|\theta_{i}(\alpha)-\theta_{i+1}(\alpha)\right|^{2}
$$

Requires Iterative
Optimization

Perceptual model based aspect ratio

Ask people to estimate slope ratios for different conditions Use data to fit a model derived from perceptual theory
$\hat{p}_{i j}=\left\{\begin{array}{llll}\frac{\sin \left(\theta_{i}\right) l_{i}}{\sin \left(\theta_{j}\right) l_{j}} \times 100 & +\gamma & +\varepsilon_{i j}^{h} & \text { if HEIGHT } \\ \frac{\theta_{i}}{\theta_{j}} \times 100 & +\left(\mu+\beta \theta_{m}\right) & +\varepsilon_{i j}^{a} & \text { if ANGLE }\end{array}\right.$

Multi-Scale Banking to 45°

Idea: Use Spectral Andysis to identify trends
Find strong frequency components
Lowpass filter to create trend lines

Fitting the Data

[The Elements of Graphing Data. Cleveland 94]

[The Elements of Graphing Data. Cleveland 94]

Transforming data

How well does curve fit data?

[Cleveland 85]

Transforming data

Residual graph

- Plot vertical distance from best fit curve
- Residual graph shows accuracy of fit

[Cleveland 85]

Most powerful brain?

Most powerful brain

Beautiful Evidence [Tufte]

Graphical Calculations

Nomograms

Sailing: The Rule of Three

Nomograms

1. Compute in any direction; fix $\mathbf{n}^{\mathbf{- 1}}$ params and read nth aram
2. Illustrate sensitivity to perturbation of inputs
3. Clearly show domain of validity of computation

Theory

$\left|\begin{array}{ccc}x_{1}(u) & y_{1}(u) & w_{1}(u) \\ x_{2}(v) & y_{2}(v) & w_{2}(v) \\ x_{3}(s, t) & y_{3}(s, t) & w_{3}(s, t)\end{array}\right|=0$
http://www.projectrho.com/nomogram/

Slide rule

Model 1474-66 Electrotechnica 18 Scales

Tehnolemn Timisoara Slide Rule Archive
http://pubpages.unh.edu/~jwc/tehnolemn/

Lambert's graphical construction

Johannes Lambert used graphs to study the rate of water evaporation as
function of temperature [from Tufte 83]

Degree-of-Interest [Furnas 81, 06]

Estimate the saliency of information to display Can affect what is shown and/or how to show it

DOI ~ f(Current Focus, A Priori Importance)
Example: Google Search
Current Focus = Query Hits (e.g., TF.IDF score)
A Priori Importance = PageRank
Whats Top N results, How: List

TableLens
 [Rao \& Card 94]

http://www.youtube.com/watch?v=qWaTrRAC52U

Datelens

[Bederson et al. 04]

Single view detail + context

- Focus area - local details
- De-magnified area - surrounding context
- Like a rubber sheeł with borders tacked down

Nonlinear Magnification Infocenter [http://www.cs.indiana.edu/\~łkeahey/research/nIm/nlm.html]

6 types of distortions Cappasados
 Montagnese 011

Gaussian, Cosine, Hemisphere, Linear, Inverse Cosine and Manhattan. Top row shows transition from focus to distortion, bottom row from distortion to context.

Perspective allows more context

Perspective Wall [Mackinlay et al. 91]

Distortions

Cartograms: Distort areas

Attendance per State, 1970-1977

Election 2016 map

htip://www-personal.umich.edu/~ mejn/election/

Election 2016 map

http://www-personal.umich.edu/~ mejn/election/

Election 2016 map

http://www-personal.umich.edu/ ${ }^{\text {mejn/election/ }}$

NYT Election 2016 (based on 2012)

Statistical map with shading

rates per 100,000 population

Framed rectangle chart

Rectangular cartogram

American population [van Kreveld and Speckmann 04]

Rectangular cartogram

Native American population [van Kreveld and Speckmann 04]

New York Times Election 2004

New York Times Election 2016

2016 Electoral Map Forecast

The Upshot's forecast for the presidential race, based on the latest national and state polls.
By JOSH KAIZ and ADAM PEARCE UPDATED November 2. 2016

70 to win

Dorling cartogram

